
1

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Tutorial on Static
Verification

Rod Chapman John Joseph Chilenski
Praxis Critical Systems Boeing Commercial Airplanes

rod.chapman@praxis-cs.co.uk john.j.chilenski@boeing.com

September 17, 2003

Page 2 Change identifier in View - Header and Footer

Agenda

• Introduction
• The Catch
• Static Verification and DO-178B Objectives
• Types of Extended Static Verification
• Some Static Verification Languages and Tools
• Static Verification Projects
• Conclusions

2

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 3 Change identifier in View - Header and Footer

Introduction (1 of 10)

• Verification – The evaluation of the results of a process to ensure
correctness and consistency with respect to the inputs and
standards provided to that process. [DO-178B Glossary]

Verification Objectives
Relative to Artifact,
Resources

Standards,
Constraints,
Methods,
Tools,
Rules

Verification
Verification ResultsLifecycle Process

Artifact
Errors Detected

Page 4 Change identifier in View - Header and Footer

Introduction (2 of 10)

• Verification objectives are satisfied through a combination of
Reviews and Analyses.

• Review – Provides a qualitative assessment of correctness.

• Analysis – Provides repeatable evidence of correctness.

• Static – Evaluation of a component based on its form,
structure, content or documentation.
– Note that the form, structure or content can be modeled.
– Models can be informal or formal (mathematically based).
– Properties about the models can be approximate or exact.

– Exact properties imply Approximate ones.

3

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 5 Change identifier in View - Header and Footer

Introduction (3 of 10)

• Analysis – (continued).

• Dynamic (aka Testing) – Evaluation of a component based on
its behavior during execution of test cases against the
implementation in the target environment, or a high-fidelity
simulation of the target environment.

• Note that DO-178B partitions the testing activity.
– Test Preparation (Static)
– Test Execution (Dynamic)

• Also note that DO-178B asks for Reviews and Analyses of the
artifacts of Test Preparation and Test Execution.
– Verification of verification

Page 6 Change identifier in View - Header and Footer

Introduction (4 of 10)

Software
Requirements

Software
Design

Software
Coding Integration

Reviews

Analyses

Test Preparation

Test Execution

4

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 7 Change identifier in View - Header and Footer

Introduction (5 of 10)

Software
High-Level

Requirements
Development

Software
Design Description

Development
(SW Low-Level
Requirements &

Architecture)
Software

Source Code
Development

Software Integration
(Executable Code

Production)

Hardware/
Software

Integration
Testing

Software
Integration

Testing

Software
Low-Level

Testing

SV

DV

Page 8 Change identifier in View - Header and Footer

Introduction (6 of 10)

Discovers symptoms of errorsDiscovers errors directly

Discovers errors late in the lifecycleDiscovers errors early in the lifecycle

Thoroughness accomplished with an
infeasibly large input space

Thoroughness accomplished with a
feasibly large input or state space

Can only be applied to the partial or
complete implementation in the
(simulated) target environment

Can be applied to any lifecycle
artifact, or a model of the artifact’s
properties

Concerned with observing behavior
while exercising the partial or
complete implementation

Concerned with analysis of a
(restricted) (mathematical) model of
the system/implementation

Dynamic VerificationStatic Verification

5

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 9 Change identifier in View - Header and Footer

Introduction (7 of 10)

Only method for detecting non-
functional errors

Formal SV methods may detect >
90% of all errors

Can detect 100% of all errors with
the right test set

Approximate (informal) SV methods
can detect > 60% of all errors

Error detection (generally) not
impacted by other (undiscovered)
errors

Error detection influenced by test
data selection, previously discovered
errors may be masking others
•Execution (Controllability)
•Infection (Controllability)
•Propagation (Observability)

Error detection (generally) not
impacted by previously discovered
errors

Dynamic VerificationStatic Verification

Page 10 Change identifier in View - Header and Footer

Introduction (8 of 10)

• Recipe for Static Verification (Analysis)

Real
Software

Real
Software

Real
Question

Real
Question

Precise
Specification

Model &
Property Encoding Analysis

Engine

Result
?
? ?

6

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 11 Change identifier in View - Header and Footer

Introduction (9 of 10)

• Recipe for Dynamic Verification (Analysis)

Real
Software

Real
Software

Real
Question

Real
Question

Precise
Specification

Result
?
? ?

?

Page 12 Change identifier in View - Header and Footer

Introduction (10 of 10)

• Retrospective versus Constructive Static Verification
• Historically, most SV has been retrospective - analysis after

delivery of a "finished" product as part of "V & V" activity.
• Major problems

– Effectiveness of retrospective SV critically depends on how
well the product is built in the first place!
– Example: Chinook Mark 2 FADEC - defied static

verification by all known methods and tools!
– Often too late in life-cycle to gain full benefit.

• There is strong evidence to support constructive SV - the
application of SV as a development activity as the system is
built.
– Catch: For constructive SV to work, it must be efficient and

modular.

7

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 13 Change identifier in View - Header and Footer

Agenda

• Introduction

• The Catch
• Static Verification and DO-178B Objectives
• Types of Extended Static Verification
• Some Static Verification Languages and Tools
• Static Verification Projects
• Conclusions

Page 14 Change identifier in View - Header and Footer

The Catch (1 of 2)

• Languages Do Matter!

• Ambiguity in language design is the enemy of SV.
• ISO C90 has about 200 undefined "features."
• What's a tool to do when it encounters one of these?

– Make an assumption? (Dangerous…)
– Analyze every possible semantics? (Analysis time

explodes…)
– Specialize to the compiler? (Nightmare…)
– Ignore it? (Dangerous…)

• Certain language features defy analysis (technically, setting NP-
hard or undecideable problems.)
• For example, complete analysis of pointers and aliasing in C.

• What about language subsets?

8

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 15 Change identifier in View - Header and Footer

The Catch (2 of 2)

• The irony of subsets and their analysis…

• To increase market share and attractiveness, most SV tools
attempt analysis of the "whole language", and therefore suffer
from the ambiguity problem.
• Analysis might be

– Unsound
– Incomplete
– Too slow for constructive use

• BUT…everyone uses subsets!!
• You do have a language or coding standard, right?!

• Possible way out: use of well-defined unambiguous subsets.
• More on this later…

Page 16 Change identifier in View - Header and Footer

Agenda

• Introduction
• The Catch

• Static Verification and DO-178B Objectives
• Types of Extended Static Verification
• Some Static Verification Languages and Tools
• Static Verification Projects
• Conclusions

9

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 17 Change identifier in View - Header and Footer

Static Verification and DO-178B Objectives
(1 of 2)

• DO-178B Table A-5 Objective 6 asks for the source code to be
accurate (i.e. correct) and consistent

• Refers to section 6.3.4f that in turn calls out the following analyses
• Stack usage (worst case memory usage)
• Fixed point arithmetic overflow and resolution
• Resource contention
• Worst-case execution timing
• Exception handling
• Use of uninitialized variables or constants (aka "data-flow

analysis")
• Unused variables or constants
• Data corruption due to task or interrupt conflicts

Page 18 Change identifier in View - Header and Footer

Static Verification and DO-178B Objectives
(2 of 2)

• These analyses can be accomplished either manually or with
tools.
• How many are performing manual analyses?
• How many are using tools?

– Full automation?
– Partial?

– Qualified?
• Effective?

• DO-178B does not preclude other analyses.
• How many are performing other analyses?
• What are they?

10

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 19 Change identifier in View - Header and Footer

Agenda

• Introduction
• The Catch
• Static Verification and DO-178B Objectives

• Types of Extended Static Verification
• Some Static Verification Languages and Tools
• Static Verification Projects
• Conclusions

Page 20 Change identifier in View - Header and Footer

Types of Extended Static Verification (1 of 9)

• Static semantics and subset checking

• Enforcement of language subset rules and/or local coding
standards.

• Simple stuff: "Don't use language feature X".

• More subtle:
– "There shall be no function side-effects."
– "There shall be no dependence on expression evaluation

order."

11

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 21 Change identifier in View - Header and Footer

Types of Extended Static Verification (2 of 9)

• Data flow analysis

• Very old style of analysis (at least 30 years old now…)

• Analysis that all variables have a well-defined value before
they are referenced - a very common source of programming
defect, which is very difficult to detect by testing.

• Can be "local" (within a single function), or "global" (whole
program.)

• Lots of tool support for this for most languages. Should be
mandatory!

Page 22 Change identifier in View - Header and Footer

Types of Extended Static Verification (3 of 9)

• Information flow analysis

• Does all data-flow analysis, plus

• Verification of required inputs-to-outputs information flow
– i.e., dependencies of outputs on inputs.

• Detection of invariant or "stable" expressions.

• Detection of ineffective statements and expressions
– E.g. writing to a variable twice without reading it in between.

• (Aside - IFA mostly invented by the security community - it's
very useful if you want to know where your (secret) data is
going!)

12

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 23 Change identifier in View - Header and Footer

Types of Extended Static Verification (4 of 9)

• Theorem Proving
• The generation of small theorems about a program, the proof

of which verify particular program properties.
– Start with an assertion at two program points (initial, final)
– Show that the statements between the two statements

transform the initial assertion into the final assertion, or why
not

• Automated theorem proving is now very good at doing the
hard work for you!

• Program properties we can verify:
– Exception freedom (e.g. no buffer overflows!)
– Partial correctness (w.r.t. "contracts")
– Safety properties (e.g. invariants)

• Examples: ESC/Java, SPARK, Microsoft SLAM.

Page 24 Change identifier in View - Header and Footer

Types of Extended Static Verification (5 of 9)

• Abstract Interpretation
• Represents selective dynamics of a software application

through a static mathematical model.
– Extracts only those properties from the source code

relevant to the analysis (slicing).
• Allows analysis and prediction of selected behavior.
• Checks each code section against all possible inputs.

– Still concerns about the size of that space (scaling).
• Is a mature technology.

– Developed about 20 years ago, but had to wait for
increased computing power.

• Commercial tool support now available.

13

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 25 Change identifier in View - Header and Footer

Types of Extended Static Verification (6 of 9)

• Symbolic Execution
• Represents the output values of a program as a symbolic

(abstract) specification (function) of the inputs.
– Use symbols instead of values to represent the inputs to the

program.
– Represent the values of program variables as symbolic

expressions.
• Can be used to analyze data states.
• Can be used to generate test specifications or data.
• Can be used to verify safety property constraints.
• Branching constructs cause complexity.

– Especially dynamic loops (and recursion)!
• Length and number of input-to-output paths cause problems.
• Mature technology – not widely used.

– Commercial tools for ForTran 77

Page 26 Change identifier in View - Header and Footer

Types of Extended Static Verification (7 of 9)

• Model Checking
• A mathematical model of a system as a state machine.
• Mechanical exploration of that state machine to verify a

particular property.
• Tool either says "Yes" or "No, and here's a counter-example"

• Main uses so far in hardware design and verification of
communications protocols.

• Some use in software now - Microsoft SLAM for instance.
• Problem: Computation time/space tends to explode.

– Every path through the state machine is explored.

• A very active research field, so keep an eye on this one.

14

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 27 Change identifier in View - Header and Footer

Types of Extended Static Verification (8 of 9)

• Timing and Schedulability analysis
• WCET Analysis - to find worst-case execution time of single

tasks or threads.
– Theory is well-developed, but complexity of modern CPUs

has made tool support very hard, and therefore little use in
industry so far..

• Schedulability
– Analysis of "whole program" (tasks, interrupt handlers,

scheduler etc.) to determine end-to-end response times,
deadline satisfaction etc.

– "Rate monotonic" family of analyses are the best known.
– Mature tool support exists now.
– Catch: adoption of an analyzable (subset) concurrency

model. e.g Ada95 Ravenscar tasking profile.

Page 28 Change identifier in View - Header and Footer

Types of Extended Static Verification (9 of 9)

• Memory use analysis
• Analysis to determine "no memory leaks" or maximum bound

on memory usage.

• Depends heavily on whether you use
pointers/malloc/free/garbage collection etc. etc.

• In simple languages, this reduces to an analysis of worst-case
stack usage in a non-recursive program. Easy.

• Worst-case - analysis of allocation, deallocation, garbage
collection etc. in a dynamic language. Very hard!

• Obvious interaction with real-time and timing-analysis issues.

15

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 29 Change identifier in View - Header and Footer

Agenda

• Introduction
• The Catch
• Static Verification and DO-178B Objectives
• Types of Extended Static Verification

• Some Static Verification Languages and Tools
• Static Verification Projects
• Conclusions

Page 30 Change identifier in View - Header and Footer

Some Static Verification Languages and Tools
(1 of 5)

• MISRA C
• A set of "guidelines" for the use of C developed by the automotive

industry. Varied acceptance.
• 127 rules.
• Rules are informally defined, in "ISO English."
• Rules basically imply: subset checking, static semantic checks, and

data-flow analysis.

• The good news:
– Probably the best (public) guidelines for the use of C ever

produced.
– Adoption by automotive industry has prompted much activity from

the tool vendors to support it.
– Now being revised to give a more formal definition of the rules.
– Has influenced significant projects, such as JSF.

16

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 31 Change identifier in View - Header and Footer

Some Static Verification Languages and Tools
(2 of 5)

• MISRA C
• The bad news:

– Informality of rules and inherent ambiguity of C90
– "Compliance" is almost impossible to claim.

– All tool vendors claim "100%" implementation of the rules.
– All the tools are different!
– Which is right?!?

– C is very "pointer-centric" - meaning some of the rules are
NP-hard or even undecideable to implement - oh dear…

– Deep analysis is slow, which limits constructive use.
– Tools suffer from high false-alarm rate.

Page 32 Change identifier in View - Header and Footer

Some Static Verification Languages and Tools
(3 of 5)

• The Extended Static Checker for Java (ESC/Java)
• Advanced research tool from Compaq/HP SRC.

• Developed from ESC/Modula 3

• Implements data-flow analysis, theorem-proving and uses annotations
which embody "design-by-contract" information for the tool to use.

• Theorem proving is "under the hood", so (almost) invisible to user.

• Problems: will this ever be a commercial product? Java is still
unproven in hard real-time, safety-critical systems.

• Watch out for: SofCheck Inc - trying to bring similar technology to
commercial use.

17

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 33 Change identifier in View - Header and Footer

Some Static Verification Languages and Tools
(4 of 5)

• SPARK
• An annotated (design-by-contract again…) subset of Ada95.
• Subset is specifically designed for hard real-time, embedded,

safety- and security-critical systems.
• Designed to have a totally unambiguous semantics, so

analysis can be both deep and efficient.
• Tools do not attempt analysis of "full Ada" so the whole-

language problem does not appear.

• Analyses available:
– Mandatory: subset checking, static semantics, data-flow

analysis.
– Optional (stage 1): Information-flow analysis.
– Optional (stage 2): Theorem proving for exception freedom,

partial correctness, safety properties.

Page 34 Change identifier in View - Header and Footer

Some Static Verification Languages and Tools
(5 of 5)

• SPARK
• Good news:

– Has an industrial track record in all of the toughest software
standards in many industries:
– Commercial Aero: DO-178B Level A
– Defence: UK Def Stan 00-55 SIL4
– Security: ITSEC E6, Common Criteria
– Rail: CENELEC 50128

• Not so good news:
– "But it's Ada…"
– It's British! ("Why can't we buy an American one?")

18

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 35 Change identifier in View - Header and Footer

Agenda

• Introduction
• The Catch
• Static Verification and DO-178B Objectives
• Types of Extended Static Verification
• Some Static Verification Languages and Tools

• Static Verification Projects
• Conclusions

Page 36 Change identifier in View - Header and Footer

Static Verification Projects
The Lockheed-Martin C130J

19

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 37 Change identifier in View - Header and Footer

C130J Mission Computer

• 130,000 lines of safety related code in mission computer

• Process designed to
• reduce V&V costs (and consequent delays)
• meet certification requirements, UK MoD, RAF, and FAA

• Based on rigorous specification and design
• SPC CoRE (Parnas tables)
• SPARK

Page 38 Change identifier in View - Header and Footer

C130J Mission Computer - Timeline

• 1995 - Lockheed adoption of SPARK “encouraged” by RAF and
QinetiQ Boscombe Down for Level A Mission Computer (MC) and
Bus Interface Unit (BIU).

• 1996-1998 - Aircraft development and flight test. Dual certification
to both DO-178B and Def Stan 00-55.

• 1999 - Retrospective static analysis of all software conducted by
AeroSystems International (AEI) in the UK.

20

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 39 Change identifier in View - Header and Footer

C130J Mission Computer - Observations

• During adoption of SV

• Significant drop in pre-test defect rate.

• Subsequent saving in formal test process.

• Some significant defects found in code that had already
passed formal testing.

• SPARK forced engineers to ask tough questions (e.g. "What
inputs is this output validity flag supposed to depend on?").
Actually found specification and requirements defects.

Page 40 Change identifier in View - Header and Footer

C130J - Lockheed on SPARK

• Some errors immediately uncovered by formal analysis, such as conditional
initialization errors may only emerge after very extensive testing.

• The technology for generating and discharging the proof obligations, based on the
SPARK components of Ada, was crucial, in binding the code to the initial
requirements.

• SPARK provides an extremely robust and efficient basis for formal verification.
• The process has proven effective with typical software developers and did not

necessitate and inordinate amount of additional training.
• Experience has shown that SPARK coding occurs at near typical Ada rates.
• Code written in SPARK is deterministic and inherently statically analysable.
• Very few errors have been found in the software during even the most rigorous

levels of FAA testing, which is being successfully conducted for less than a fifth of
the normal cost in industry.

• Correctness by construction is no longer a theoretical abstraction; it is now a
practical way to develop software that exceeds its technical goals while delivering
sterling business performance.

21

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 41 Change identifier in View - Header and Footer

C130J - Lockheed on SPARK

• Some errors immediately uncovered by formal analysis, such as conditional
initialization errors may only emerge after very extensive testing.

• The technology for generating and discharging the proof obligations, based on the
SPARK components of Ada, was crucial, in binding the code to the initial
requirements.

• SPARK provides an extremely robust and efficient basis for formal verification.
• The process has proven effective with typical software developers and did not

necessitate and inordinate amount of additional training.
• Experience has shown that SPARK coding occurs at near typical Ada rates.
• Code written in SPARK is deterministic and inherently statically analysable.
• Very few errors have been found in the software during even the most rigorous

levels of FAA testing, which is being successfully conducted for less than a fifth of
the normal cost in industry.

• Correctness by construction is no longer a theoretical abstraction; it is now a
practical way to develop software that exceeds its technical goals while delivering
sterling business performance.

Very few errors have been found in the
software during even the most rigorous
levels of FAA testing, which is being
successfully conducted for less than a fifth
of the normal cost in industry.

Page 42 Change identifier in View - Header and Footer

C130J - The AeroSystems Study

• Static analysis of all the software on the aircraft, after the
certification of the aircraft.

• On the MC and BIU, L-M had only performed static semantics and
information-flow analysis - no proof.

• AEI did proof on the MC and BIU SPARK code - exception
freedom and partial correctness with respect to Parnas tables.

• All anomalies recorded and classified.

• C. 10000 anomalies found. Approx 1% had safety impact.

22

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 43 Change identifier in View - Header and Footer

C130J - AeroSystems Results

• Lines of code per anomaly by subsystem and programming
language:

D
A

/F

BIU
-BU

R

M
C

BU
R

V
H

F-

FA
D

E
H

U
D

BIU
-O

FP

A
verage

BA
U

 II
FM

C
S

G
C

A
S

BA
EC

S
N

I
FO

D
S

D
A

D
S

EC
BU

H
U

ID
P

H
U

0

50

100

150

200

250

300

Ada

Assembler

LUCOL

SPARK

C

PLM

Page 44 Change identifier in View - Header and Footer

Agenda

• Introduction
• The Catch
• Static Verification and DO-178B Objectives
• Types of Extended Static Verification
• Some Static Verification Languages and Tools
• Static Verification Projects

• Conclusions

23

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 45 Change identifier in View - Header and Footer

Conclusions (1 of 2)

• There is strong technical and commercial evidence to support the use of
SV, regardless of safety/integrity level.

• SV directly addresses DO-178B objectives, and (perhaps more
importantly) can indirectly ease integration, testing and subsequent
lifecycle phases.

• "Extended static analysis" such as abstract interpretation, model
checking, and theorem proving are now used on an industrial scale.
• These may not be required by DO-178B, but that's no reason not to

use such technology if they make your project better and/or cheaper!

• There are strong signs of a "new golden age" for SV:
• New tools (e.g. Polyspace, RavenSPARK, SofCheck…)
• New markets (e.g. automotive, security…)
• New languages (e.g. Java, Microsoft Vault)

Page 46 Change identifier in View - Header and Footer

Conclusions (2 of 2)

• Static Verification is generally applied to a model of some property of
either the intended or actual implementation.
• But we can’t model everything.

• Dynamic Verification is generally applied to the implementation in either a
simulated or actual environment.
• But we can’t test for everything.

• Therefore, we need both.
• Best if they are used in a complementary fashion.

– Use strengths of one to cover the weaknesses of the other.

• We need to design and implement for verifiability!
• Design for testability (DV) well established in hardware.
• Design and implementation for SV is needed.
• Languages really do matter!

24

2003 FAA National Software Conference
Tutorial on Static Verification

Rod Chapman & John Chilenski

Page 47 Change identifier in View - Header and Footer

SV Resources

• Some background information, papers and so on for the
languages and technologies mentioned in this tutorial:

• General
• "Software Static Code Analysis: Lessons Learnt" by Andy

German. CrossTalk Journal, November 2003 (to appear).

• MISRA C - www.misra.org.uk

• ESC/Java - research.compaq.com/SRC/esc/Esc.html

Page 48 Change identifier in View - Header and Footer

SV Resources

• SPARK
• www.sparkada.com
• "High Integrity Software: The SPARK Approach to Safety and

Security" by John Barnes. Addison Wesley, 2003. ISBN 0-
321-13616-0.

• Microsoft SLAM - research.microsoft.com/projects/slam/main.htm
• SofCheck - www.sofcheck.com
• Abstract Interpretation: Polyspace - www.polyspace.com

• The C130J
• "Correctness by Construction: Better can also be Cheaper" by

Peter Amey. CrossTalk Journal, March 2002.
www.stsc.hill.af.mil

